REAL-TIME MONITORING OF DED ADDITIVE MANUFACTURING PROCESS FOR ZERO **DEFECT MANUFACTURING (REDAMP)**

University of Applied Sciences and Ar SUPSI

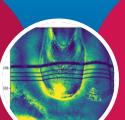
January 2020

510k€ EIT **Funding**

System specs Feb/2020

Lab validation lune/2020

Integration of systems Oct/2020


Industrial validation lune/2021

Al coupling Nov/2021

CHALLENGE

Need for zero-defect production by enabling inline monitoring and defect detection to allow for insitu repair & to guarantee the part's suitability for demanding applications & reduce certification cost

SOLUTION

Adapting advanced online monitoring and NDT techniques for early defects detection, using Al techniques allowing immediate repair to avoid material waste & provide a pathway to certification of WAAM via NDT.

BENEFITS

Industrialisation of inline NDT for in-situ repair of defects to reduce rejection rate and material waste and the need for rework after production., contributing to zero-defect manufacturing and facilitating certification.

MAIN PROJECT RESULTS

SPIN-OFF CREATED **Ouaranteed**

ALL DEFECTS > 500µm DURING THE PROCESS

VALIDATED FOR 2 MATERIALS AND 3 PROCESSES

This EIT grant provided us with the chance to connect research and industries that are willing to boost and innovate their manufacturing strategies),

JOACHIM ANTONISSEN

WAAM SERVICE PROVIDER

REDAMP project

AIM: REal-time monitoring of DED Additive

